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Natural frequencies and buckling stresses of a deep beam-column on two-
parameter elastic foundations are analyzed by taking into account the e!ect of
shear deformation, depth change (the transverse displacement w can vary in the
depth direction of beam-columns) and rotatory inertia. By using the method of
power series expansion of displacement components, a set of fundamental dynamic
equations of a one-dimensional higher order theory for thin rectangular beam-
columns subjected to axial stress is derived through Hamilton's principle. Several
sets of truncated approximate theories are applied to solve the eigenvalue problems
of a simply supported deep elastic beam-column. In order to assure the accuracy of
the present theory, convergence properties of the minimum natural frequency and
the buckling stress are examined in detail. It is noted that the present approximate
theories can predict the natural frequencies and buckling stress of deep
beam-columns on elastic foundations accurately compared with the Timoshenko
beam theory and the classical beam theory.
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1. INTRODUCTION

Vibration and buckling problems of beams or beam-columns on elastic
foundations occupy an important place in many "elds of structural and foundation
engineering. In many of the soil-structure interaction problems the elastic
foundation has been usually modelled by a Winkler foundation for mathematical
simplicity. However, it has been shown that the behavior of foundation materials in
engineering practice cannot be represented by this foundation model which consists
of independent linear elastic springs. In order to "nd a physically close and
mathematically simple foundation model, Pasternak proposed a so-called
two-parameter foundation model with shear interactions. The "rst foundation
parameter is the same as the Winkler foundation model and the second one is the
sti!ness of the shearing layer in the Pasternak foundation model. While the
interaction between springs has not been considered in the Winkler foundation
model, the Pasternak foundation model has taken into account the interaction
between springs for homogeneous elastic foundations. A more realistic and
generalized representation of the elastic foundation can be accomplished by the
0022-460X/99/470359#18 $30.00/0 ( 1999 Academic Press
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way of a two-parameter foundation model. The physical meaning of the second
generalized foundation parameter has di!erent de"nitions depending on the
foundation model [1].

The free #exural vibration of such structures has been extensively covered by
many investigators. For the buckling problem of beam-columns on elastic
foundations, only a few studies are available in the literature. Most of them have
been done within the scope of the classical Bernoulli}Euler beam theory to
investigate the vibration and buckling behavior of beams on elastic foundations.
This theory leads to a signi"cant overprediction of the natural frequencies and
buckling stresses of deep beams due to the neglect of the e!ects of transverse shear
deformation, depth change and rotatory inertia [2,3]. For deep beams with small
length-to-depth ratio and/or beams in which higher modes may appear, the
Timoshenko beam theory which takes into account the e!ects of shear deformation
and rotatory inertia has been applied in the analysis. Wang and Stephens [4]
studied the e!ects of Pasternak foundations on natural frequencies of "nite
Timoshenko beams. The e!ects of rotatory inertia, shear deformation and
foundation constants on the natural frequencies of the beams with di!erent end
conditions were considered. Yokoyama [5] developed a "nite element procedure
for analyzing the #exural vibrations of a Timoshenko beam-column on
two-parameter elastic foundations. The frequency parameter of a hinged}hinged
Timoshenko beam-column without axial force has been compared with that of an
elementary Euler}Bernoulli beam-column. The free vibration frequencies of
Timoshenko beams on two-parameter elastic foundation were examined by Rosa
[6] for two di!erent foundation models of the second foundation parameter. In the
"rst model, the second foundation parameter is assumed to be a function of the
#exural rotation, whereas in the second model, it is assumed to be a function of
the global cross-section rotation. The inherent de"ciency of the Timoshenko beam
theory is the presence of a correction factor, the so-called Timoshenko shear
correction coe$cient i2, which is introduced to correct the contradictory shear
stress distribution over the cross-section of the beam and cannot be found from
within the assumptions of the theory itself. The shear correction coe$cient should
be adjusted for studying the higher mode vibrational behavior of beams because the
dynamic shear strain distribution may di!er signi"cantly from the parabolic form
of the static shear strain distribution.

Higher order shear-deformable theories have been developed for beams with
rectangular cross-sections that account for the strain distribution through the
depth to satisfy the stress-free boundary conditions on the upper and lower surfaces
without the need for a shear correction coe$cient. In retaining the parabolic
distribution of the tranverse shear strain, a shear deformation theory for
rectangular beams that accounts for the shear free boundary conditions on the
lateral surfaces of the beam was proposed by Levinson [7, 8]. Without requiring
the speci"cation of a shear correction coe$cient in the Timoshenko beam theory,
the theory allows the cross-sections both to rotate relative to the neutral axis and to
warp into a non-planar surface. Although the shear strain vanishes on the upper
and lower surfaces of a beam, the boundary conditions for shear and normal
stresses may not be satis"ed in the theory. By expanding the axial displacement
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component as a cubic function of the beam depth co-ordinate, Heyliger and Reddy
[9] have also developed a higher order beam "nite element by using a variationally
consistent higher order beam theory. The theory accounts for the shear strain
vanished on the upper and lower surfaces of the beam. Since the normal
displacement is assumed to be constant through the depth of a beam, the depth
change of the beam is not allowed and the stress boundary conditions for normal
stress on the upper and lower surfaces of the beam are not satis"ed. These theories
further assume that the in-plane cross-sectional stresses are negligible and that the
cross-section does not deform in its own plane.

As an extension of the classical beam theory, a one-dimensional higher order
theory has been developed for a deep beam and has been applied to the vibration
and stability problems of a very deep beam by Matsunaga [2, 3]. Natural
frequencies and buckling stresses of deep beams subjected to axial stresses
have been analyzed by using the one-dimensional higher order theory. Remark-
able e!ects of transverse shear deformations and depth changes have been
noticed in the results. However, higher order theories of beams which take into
account the complete e!ects of shear deformations, depth changes and rotatory
inertia have not been investigated in the problem of beam-columns on elastic
foundations.

This paper presents a one-dimensional higher order theory of deep elastic
beam-columns resting on elastic foundations which can take into account the
complete e!ects of both shear deformations and depth changes. Several sets of the
governing equations of truncated approximate theories are applied to the analysis
of vibration and buckling problems of a simply supported deep elastic
beam-column on two-parameter elastic foundations subjected to axial stresses.
Based on the power series expansions of displacement components, a fundamental
set of equations of a one-dimensional higher order beam-column theory is derived
through Hamilton's principle. Natural frequencies and buckling stresses of
a beam-column on two-parameter elastic foundation subjected to axial stresses are
obtained by solving the eigenvalue problem numerically. Convergence properties of
the present numerical solutions are shown to be accurate for the natural frequencies
and buckling stresses with respect to the order of approximate theories.
A comparison of the present results is made with previously published results. The
present results obtained by various sets of approximate theories are considered to
be accurate enough for deep beam-columns with small length-to-depth ratio. It is
noticed that the one-dimensional higher order theory, in the present paper, can
predict the natural frequencies and buckling stresses of simply supported deep
beam-columns on two-parameter elastic foundations accurately when compared
with the Timoshenko beam theory and the classical beam theory.

2. GOVERNING EQUATIONS OF BEAM-COLUMNS ON ELASTIC
FOUNDATIONS

Consider a straight uniform beam-column of length ¸ resting on a
two-parameter elastic foundation (Figure 1), having a rectangular cross-section of



Figure 1. Co-ordinate and geometry of beam-column on two-parameter elastic foundation.
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depth H and width B which is assumed to be su$ciently small relative to the depth.
A Cartesian co-ordinate system (x, y, z) is de"ned on the central axis of the
beam-column, where the x-axis is taken along this axis, with the y-axis in the width
direction and the z-axis in the depth direction. Assuming that the deformations of
the beam taken place in the x}z plane, the displacement components in
a beam-column can be expressed as

u,u(x, z; t) , v,v(x, z; t)"0, w,w(x, z; t) , (1)

where t denotes time. The displacement components may be expanded into power
series of the depth co-ordinate z as follows:

u"
=
+
n/0

(n)u zn , w"

=
+
n/0

(n)wzn , (2)

where n"0, 1, 2, 2 , R.
Based on this expression of the displacement components, a set of the linear

governing equations of a one-dimensional higher order theory of beam-column can
be summarized in the following.

2.1. STRAIN}DISPLACEMENT RELATIONS

Strain components may also be expanded as follows:

e
xx
"

=
+
n/0

e(n)
xx
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"

=
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n/0

c(n)
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=
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n/0
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zn (3)

and strain}displacement relations can be written as [10]

e(n)
xx
"

(n)u
,x,

c(n)
xz
"c(n)

zx
"

1
2 G(n#1) (n`1)u #

(n)w
,xH, e(n)

zz
"(n#1) (n`1)w , (4)

where a comma denotes partial di!erentiation with respect to the co-ordinate
subscripts that follow.
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2.2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

Under the assumption of plane strain or plane stress in the width direction, by
introducing stress components p

xx
, q

xz
"q

zx
and p

zz
, Hamilton's principle is

applied to derive the equations of motion and natural boundary conditions of
a beam-column on two-parameter elastic foundations. In order to treat vibration
and stability problems of a beam subjected to uniformly distributed axial stress
p
0
"p

0
(z), additional work due to this stress which is assumed to remain

unchanged during vibrating and/or buckling is taken into consideration. It is also
assumed that stresses are free on the upper surface of the beam-column, the lower
surface of which is supported on an elastic foundation.

The principle for the present problems may be expressed as follows:
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where the over dot indicates partial di!erentiation with respect to time and
o denotes the mass density; d<, the volume element; dS, the element of area of the
external surface; k

1
, the "rst foundation parameter which is referred to as the

Winkler foundation sti!ness; k
2
, the second generalized foundation parameter.

The axial stress p
0

is assumed to be expanded a follows:

p
0
"

=
+
l/0

(l)p
0
zl , (6)

where l"0, 1, 2, 2 , R.
By performing the integration over the area of cross-section of the beam-column

and the variation as indicated in equation (5), the equations of motion are obtained
as follows:
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where n, m"0, 1, 2, 2 , R.
The stress resultants are de"ned as follows:
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The following function is de"ned as

f (k),P
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(k: odd),

(9)

where k is an integer.
For the equations of boundary conditions at the ends on the central axis, the

following quantities:

(n)u or (n)N#

=
+
l/0

=
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m/0
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0
(m)u

,x
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are to be prescribed.

2.3. CONSTITUTIVE RELATIONS

For elastic and homogeneous isotropic materials, the two-dimensional
constitutive relations can be written as
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According to the assumptions of plane strain or stress states in the width direction
of the beam-column, the coe$cient j1 is de"ned by

j1 "

i
g
j
g
k

j (plane strain),

2kj
2k#j

(plane stress),
(12)

where LameH 's constants j and k are de"ned by using Young's modulus E and the
Poisson ratio l as follows:

j"
El

(1#l) (1!2l)
, k"

E
2(1#l)

. (13)

2.4. STRESS RESULTANTS IN TERMS OF THE EXPANDED DISPLACEMENT COMPONENTS

Stress resultants can be expressed in terms of the expanded displacement
components as follows:
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2.5. EQUATIONS OF MOTION IN TERMS OF THE EXPANDED DISPLACEMENT COMPONENTS

The equations of motion can be expressed in terms of the expanded displacement
components by using equations (14) as
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Since the lower plane of a deep beam-column is supported by an elastic foundation
and the upper plane is stress free, the equations of motion cannot be separated into
the axial and #exural problems.

2.6 MTH ORDER APPROXIMATE THEORY

Since the fundamental equations mentioned above are complicated, Mth
(M*1) order approximate theory may be considered for the present analysis.
A similar set of the following combination of the selected terms of displacement
components is suggested from the form of shear strain components in the second
equation of equation (4) as follows:

u"
2M~1

+
m/0

(m)u zm , w"

2M~2
+

m/0

(m)wzm , (16)

where m"0, 1, 2,3, 2 , M. The total number of the unknown displacement
components is (4M!1).

In the above cases of M"1, an assumption that the normal strain e
zz

is zero is
inherently imposed. Another set of the governing equations of the lowest order
approximate theory (M"1) is derived using an assumption that the normal stress
p
zz

is zero. For #exural problems, this theory corresponds to the Timoshenko beam
theory with the shear correction coe$cient i2"1. Under this assumption, if the
shear strain c

xz
vanishes through the depth of a beam-column, the lowest order

approximate theory reduces to the classical beam theory.
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3. NAVIER SOLUTION FOR SIMPLY SUPPORTED BEAM-COLUMN

In order to show the applicability and reliability of the present one-dimensional
higher order theories for the analysis of vibration and buckling problems of a deep
elastic beam, a simply supported beam-column subjected to axial stress on
a two-parameter elastic foundation is analyzed. In the following analysis, the axial
stress is assumed to distribute uniformly in the depth direction. Only the "rst term
of the expanded axial stress (6) is considered, i.e. p

0
"p(0)

0
.

Boundary conditions (10) can be expressed on the x-constant edges,

(n)u
,x
"0, (n)w"0. (17)

Since a beam-column is in a state of uniform stresses, the axial stress is
considered to be constant during vibrating and/or buckling. Following the Navier
solution procedure, displacement components that satisfy the equations of
boundary conditions (17) may be expressed as

(n)u"

=
+

r/1

(n)u
r
cos

rnx
¸

) eiut , (n)w"

=
+

r/1

(n)w
r
sin

rnx
¸

) eiut , (18)

where the displacement mode number r"1, 2, 3, 2 , R, u denotes the circular
frequency and i, the imaginary unit.

The equations of motion are rewritten in terms of the generalized displacement

components (n)u
r
and (n)w

r
.

The dimensionless axial or buckling stress " is de"ned as follows:

""

Ap
0

P
c

, (19)

where P
c
is the minimum buckling load for the bending problem of a beam from the

classical beam theory expressed by

P
c
"

n2EI
¸2

, I"
BH3

12
. (20)

The dimensionless frequency X is de"ned as follows:

X"u¸2S
oA
EI

, A"BH . (21)

The dimensionless elastic constants of foundations may also be de"ned as follows:

K
1
"

k
1
¸4

EI
, K

2
"

k
2
¸2

n2EI
. (22)

4. EIGENVALUE PROBLEM FOR VIBRATION AND BUCKLING PROBLEMS

The equations of motion (15) can be rewritten by collecting the coe$cients for
the generalized displacements of any "xed value r. The generalized displacement



BEAM-COLUMNS ON ELASTIC FOUNDATIONS 367
vector MUN is expressed as

MUNT"G (0)u
r
, 2 , (2M~1)u

r
; (0)w

r
, 2 , (2M~2)w

r H . (23)

The dynamic equation can be expressed as the following eigenvalue problem:

([K]!X2[M])MUN"M0N , (24)

where matrix [K] denotes the sti!ness matrix which may contain the terms of the
axial stress, and matrix [M] denotes the mass matrix.

For buckling problems, the natural frequency vanishes and the stability equation
can be expressed as the following eigenvalue problem:

([K]#"[S])MUN"M0N , (25)

where matrix [K] denotes the sti!ness matrix and matrix [S], the geometric-
sti!ness matrix due to the axial stress.

The power method [11] is used to obtain the numerical solution of
the eigenvalue problems. The number of eigenvalues is the same as that of the
components of the generalized displacement vector for each displacement mode
number of r. Although all the eigenvalues and eigenvectors can be computed by
this method, the dominant eigenvalue which corresponds to the minimum
frequency is of great concern.

When the lowest frequency vanishes, the axial stress reduces to the critical
buckling stress of the beam-column. The same buckling stresses are obtained by
solving the stability equation (25) and also the dynamic equation (24) by increasing
the axial compressive stresses.

5. NUMERICAL EXAMPLES AND RESULTS

5.1 NUMERICAL EXAMPLES

A simply supported deep beam-column on a two-parameter elastic foundation is
analyzed. The e!ects of higher order deformations such as shear deformation, depth
change and rotatory inertia on natural frequencies and buckling stresses of a deep
beam-column subjected to axial stresses are studied through the numerical
examples. The Poisson ratio is "xed at l"0)3. All the numerical results are
obtained for the case of plane stress in the width direction and are shown in the
dimensionless quantities.

5.2. CONVERGENCE OF THE LOWEST NATURAL FREQUENCY AND BUCKLING STRESS AND
COMPARISON WITH THOSE OF EXISTING THEORIES

In order to verify the accuracy of the present solutions, the convergences of the
lowest natural frequencies without axial stresses and the critical buckling stresses of
the present approximate theories for the "rst displacement mode r"1 are shown in
Tables 1 and 2 respectively. A direct comparison of the present solutions with those



TABLE 1

Convergence of natural frequencies and comparison with previously published results

¸/H K
1

K
2

CBT TBT M"1s M"2 M"3 M"4

2 0 0 9)8696 7)4127 7)6269 7)4701 7)4664 Q

10 10)3638 8)0106 8)2033 8)0133 8)0102 Q

102 14)0502 12)1084 12)2016 11)2841 11)2820 Q

103 33)1272 29)0828 29)3176 17)5505 17)5208 Q

104 100)4859 34)6364 36)6283 18)9936 18)9458 Q

105 316)3817 34)8004 36)8546 19)1246 19)0754 Q

0 1 13)9577 12)0106 12)1055 11)2156 11)2136 Q

10 14)3115 12)3836 12)4719 11)4743 11)4721 Q

102 17)1703 15)3153 15)3609 13)2711 13)2672 Q

103 34)5661 29)9225 30)2643 17)6944 17)6630 Q

104 100)9694 34)6383 36)6310 18)9950 18)9472 Q

105 316)5356 34)8004 36)8546 19)1246 19)0755 Q

5 0 0 9)8696 9)2740 9)3430 9)2905 9)2903 Q

10 10)3638 9)7848 9)8497 9)7914 9)7912 Q

102 14)0502 13)5408 13.5851 13)4727 13)4726 Q

103 33)1272 32)5378 32)5469 31)6171 31)6171 Q

104 100)4859 98)5400 98)6078 53)8885 53)8874 Q

105 316)3817 177)2381 192)2551 54)0261 54)0250 Q

0 1 13)9577 13)4473 13)4920 13)3812 Q Q

10 14)3115 13)8045 13)8478 13)7307 Q Q

102 17)1703 16)6781 16)7119 16)5354 Q Q

103 34)5661 33)9613 33)9692 32)9239 Q Q

104 100.9694 99)0068 99)0766 53)8906 Q Q

105 316.5356 177)2396 192)2575 54)0261 Q Q

10 0 0 9.8696 9)7071 9)7270 9)7121 Q Q

10 10.3638 10)2057 10)2246 10)2078 Q Q

102 14.0502 13)9086 13)9224 13)8941 Q Q

103 33.1271 32)9615 32)9665 32)8494 Q Q

104 100.4859 100)0749 100)0749 98)1173 Q Q

105 316.3817 314)8251 314)8771 108)6430 Q Q

0 1 13.9577 13)8162 13)8297 13)8018 Q Q

10 14.3115 14)1709 14)1840 14)1548 Q Q

102 17.1703 17)0326 17)0434 17)0046 Q Q

103 34.5661 34)3963 34)4011 34)2741 Q Q

104 100.9694 100)5564 100)5564 98)5532 Q Q

105 316.5356 314)9778 315)0300 108)6431 Q Q

CBT: Classical beam theory TBT: Timoshenko beam theory (shear coe$cient i2"5
6
) M"1s: TBT

(p
zz
"0, i2"1)
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of classical beam theory (CBT) and Timoshenko beam theory (TBT) in which the
e!ects of extension and rotatory inertia are included here is also made. The present
CBT and TBT solutions of natural frequencies (and buckling stresses) agree
perfectly with the previously published results in the "gures of reference [5] for the
same data. A signi"cant overprediction of CBT solutions for deep beams due to the



TABLE 2

Convergence of the ,rst buckling stresses and comparison with previously published
results

¸/H K
1

K
2

CBT TBT M"1s M"2 M"3 M"4

2 0 0 1)0000 0)5641 0)5971 0)5729 0)5723 Q

10 1)1027 0)6588 0)6908 0)6592 0)6587 Q

102 2)0266 1)5051 1)5284 1)3072 1)3067 Q

103 11)2660 8)6831 8)8238 3)1621 3)1514 Q

104 103)6598 12)3159 13)7732 3)7035 3)6849 Q

105 1027)5980 12)4328 13)9439 3)7548 3)7355 Q

0 1 2)0000 1)4809 1)5044 1)2914 1)2909 Q

10 2)1027 1)5734 1)5969 1)3516 1)3511 Q

102 3)0266 2)4080 2)4223 1)8081 1)8070 Q

103 12)2660 9)1917 9)4029 3)2142 3)2028 Q

104 104)6598 12)3173 13)7752 3)7041 3)6854 Q

105 1028)5980 12)4328 13)9439 3)7548 3)7355 Q

5 0 0 1)0000 0)8830 0)8961 0)8861 0)8860 Q

10 1)1027 0)9829 0)9960 0)9842 Q Q

102 2)0266 1)8823 1.8946 1)8634 Q Q

103 11)2660 10)8687 10)8748 10)2623 Q Q

104 103)6598 99)6841 99)8213 29)8121 29)8108 Q

105 1027)5980 322)4889 379)4514 29)9646 29)9633 Q

0 1 2)0000 1)8564 1)8688 1)8382 Q Q

10 2)1027 1)9563 1)9686 1)9355 Q Q

102 3)0266 2)8556 2)8672 2)8069 Q Q

103 12)2660 11)8405 11)8460 11)1281 Q Q

104 104.6598 100)6308 100)7727 29)8145 29)8132 Q

105 1028.5980 322)4944 379)4609 29)9646 29)9634 Q

10 0 0 1.0000 0)9675 0)9714 0)9683 Q Q

10 1.1027 1)0693 1)0732 1)0697 Q Q

102 2.0266 1)9859 1)9901 1)9818 Q Q

103 11.2660 11)1535 11)1571 11)0779 Q Q

104 103.6598 102)8135 102)8137 98)8306 98)8305 Q

105 1027.5980 1017)5110 1017)8470 121)1726 121)1723 Q

0 1 2)0000 1)9597 1)9636 1)9556 Q Q

10 2.1027 2)0616 2)0655 2)0569 Q Q

102 3.0266 2)9784 2)9820 2)9685 Q Q

103 12.2660 12)1458 12)1491 12)0596 Q Q

104 104.6598 103)8057 103)8057 99)7108 99)7107 Q

105 1028.5980 1018)4990 1018)8360 121)1726 121)1724 Q

CBT: Classical beam theory TBT: Timoshenko beam theory (shear coe$cient i2"5
6
) M"1s: TBT

(p
zz
"0, i2"1)
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neglect of the e!ects of transverse shear deformation, depth change and rotatory
inertia can be seen in the results. The inherent de"ciency of the Timoshenko beam
theory is the presence of a correction factor i2, which cannot be found from within
the assumptions of the theory itself. The complete e!ects of higher order
deformations such as shear deformations with depth changes and rotatory inertia
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for the analysis of vibration and buckling problems of deep beam-columns on
elastic foundations should be taken into account.

It is observed that the proper order of the present higher order approximate
theories may be estimated according the level of ¸/H. Since the present results for
M"1}4 converge accurately enough within the present order of approximate
theories, only the numerical results for M"5 are discussed.

5.3. NATURAL FREQUENCIES WITHOUT AXIAL STRESS AND BUCKLING STRESSES

Both the "rst three natural frequencies (r"1}3) of a beam-column without axial
stresses and the "rst three buckling stresses are shown in Table 3 for all the values of
¸/H and for several combinations of elastic foundation parameters. The results
converge enough for M"5 with su$cient numerical accuracy.

The lowest two natural frequencies for r"1 of a beam-column without axial
stresses versus the "rst foundation parameter K

1
is plotted for ¸/H"2 and 5 in

Figure 2. The lower natural frequency X
1

corresponds to predominantly #exural
modes with some shear deformations, whereas the upper natural frequency
X

2
corresponds to predominantly extensional modes with depth changes. Natural

frequencies vary gently with K
1

for deep beam-columns, but vary suddenly at
a speci"c value of K

1
which may depend on ¸/H. For values of K

1
larger than this

speci"c value, the vibration modes of X
1
and X

2
change places with each other. The

second foundation parameter K
2

has an evident e!ect upon X
1

for comparatively
small values of K

1
.

5.4. NATURAL FREQUENCIES VERSUS AXIAL STRESS CURVES AND BUCKLING STRESSES

In Figure 3, the variation of the lowest two natural frequencies for r"1 with
respect to axial stresses is shown for ¸/H"2 and 5. X

1
shows the natural

frequencies which correspond to predominantly #exural modes and X
2
, extensional

modes with some shear deformation and depth change. When the lower natural
frequency X

1
vanishes, the axial stresses reduce to the critical buckling stresses of

beam-columns on elastic foundations. The lower frequency curve (X
1
) will decrease

rapidly prior to buckling and the frequency vanishes at the axial buckling stress.
The buckling stresses can be calculated usually through the stability equation

(25) as eigenvalue problems. In the case of a simply supported beam-column on
elastic foundations subjected to axial stress ", the natural frequency X

a
can be

expressed explicitly with reference to the natural frequency X
0

of a beam-column
without axial stress. The relation between X

a
and X

0
can be obtained from

comparison of the equations of motion as follows:

X2
a
"X2

0
#r2n4" . (26)

When the natural frequency X
a

vanishes under the axial stress, elastic buckling
occurs and the critical buckling stress "

cr
relates to the natural frequency X

0
as

"
cr
"!

X2
0

r2n4
. (27)



TABLE 3

First three frequencies and buckling stresses (r"1}3) of simply supported beam-
columns on two-parameter elastic foundation

X "

¸/H K
1

K
2

r"1 r"2 r"3 r"1 r"2 r"3

2 0 0 7)4664 20)4448 33)8983 0)5723 1)0728 1)3107
10 8)0102 20)6407 34)0260 0)6587 1)0934 1)3206
102 11)2820 22)0350 34)9267 1)3067 1)2461 1)3915
103 17)5208 25)6375 37)0821 3)1514 1)6869 1)5685
104 18)9457 26)9350 37)7741 3)6849 1)8620 1)6276
105 19)0754 27)0911 37)8547 3)7355 1)8836 1)6346
0 1 11)2136 24)2169 36)9912 1)2909 1)5051 1)5608

10 11)4721 24)2607 36)9993 1)3511 1)5106 1)5615
102 13)2672 24)6050 37)0664 1)8070 1)5538 1)5672
103 17)6630 25)9940 37)4162 3)2028 1)7342 1)5969
104 18)9472 26)9414 37)7813 3)6854 1)8629 1)6282
105 19)0754 27)0911 37)8548 3)7355 1)8836 1)6346

5 0 0 9)2903 32)3391 62)0126 0)8860 2)6841 4)3865
10 9)7912 32)4756 62)0801 0)9842 2)7068 4)3960
102 13)4726 33)6731 62.6813 1)8634 2)9101 4)4816
103 31)6171 43)4716 68)1451 10)2623 4)8501 5)2970
104 53)8874 82)1422 96)3702 29)8108 17)3170 10)5936
105 54)0250 102)1233 124)0626 29)9633 26)7664 17)5566
0 1 13)3811 37)2054 67)4499 1)8382 3)5526 5)1894

10 13)7306 37)3197 67)5069 1)9354 3)5745 5)1982
102 16)5353 38)3287 68)0148 2)8069 3)7704 5)2767
103 32)9238 46)8774 72)6796 11)1281 5)6398 6)0254
104 53.8895 82)9246 97)8569 29)8132 17)6485 10)9230
105 54.0250 102)1281 124)1049 29)9634 26)7689 17)5685

10 0 0 9.7121 37)1610 78)4264 0)9683 3)5442 7)0159
10 10.2078 37)2895 78)4849 1)0697 3)5687 7)0264
102 13)8941 38)4259 79)0099 1)9818 3)7896 7)1207
103 32.8494 48)3173 84)0657 11)0779 5)9917 8)0611
104 98.1173 103)3225 122)7926 98)8305 27)3987 17)1990
105 108.6429 214)8104 272)3120 121)1723 118)4271 84)5846
0 1 13.8018 41)8706 83)3926 1)9556 4)4995 7)9326

10 14.1548 41)9844 83)4474 2)0569 4)5239 7)9430
102 17.0046 42)9947 83)9388 2)9685 4)7443 8)0368
103 34.2741 52)0065 88)6905 12)0596 6)9415 8)9725
104 98.5532 105)0088 125)8413 99)7107 28)3004 18)0636
105 108.6430 214)8210 273)0282 121)1724 118)4388 85)0302
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The critical buckling stresses of simply supported beam-columns subjected to axial
stress can be predicted from the natural frequency of the beam-columns without
axial stress.



Figure 2. Natural frequency versus K
1

curves. (** : K
2
"0; } } } } } : K

2
"1) (a) ¸/H"2; (b)

¸/H"5.
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5.5. BUCKLING STRESSES VERSUS DISPLACEMENT MODE CURVES

For a simply supported beam on elastic foundations, Figure 4 shows the
variation of the buckling stresses with respect to displacement modes. The lower
(critical) buckling stresses "

1
which have #exural modes increase monotonically to

asymptotic values at higher displacement modes and the upper buckling stresses "
2

which have extensional modes decrease rapidly from those for r"1 to the same
asymptotic values. This feature shows that both the #exural and extensional
buckling instabilities can exist at higher displacement modes with wrinkling
deformations. The buckling stresses for the "rst three displacement modes r"1}3
are shown in Table 3.

The critical buckling stresses are compared with those of CBT and TBT in
Table 4. A "gure on the right shoulder of buckling stresses de"nes the buckling
mode number r and the in"nity sign shows a much higher-mode number.
It can be noticed that the buckling stresses of CBT are overestimated
for deep beam-columns, especially for large values of the "rst elastic constant of
foundations K

1
.

5.6. GENERALIZED DISPLACEMENTS OF VIBRATION AND BUCKLING MODES

The same displacement modes are obtained in the eigenvalue problems of
vibration and buckling. In order to show the variation of vibration and buckling
modes, the "rst three generalized displacements are plotted with respect to K

1
in

Figure 5. (0);
I, II

is the "rst axial generalized displacement and (0)=
I, II

and (1);
I, II

are the
"rst #exural generalized displacements. The Roman numeral I and II correspond to
the lower (X

1
, "

1
) and upper (X

2
, "

2
) natural frequencies and buckling stresses



Figure 3. Natural frequency versus axial stress curves. (** : X
1
; } } } } } : X

2
) (a) ¸/H"2, K

2
"0;

(b) ¸/H"2, K
2
"1; (c) ¸/H"5, K

2
"0; (d) ¸/H"5, K

2
"1.
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respectively. The lower natural frequency X
1

and buckling stress "
1

arise at
dominant #exural modes for small values of K

1
. For values of K

1
larger than

a speci"c value which may be a!ected by ¸/H, the displacement modes of the lower
natural frequency X

1
and buckling stress "

1
transform into dominant axial modes.

However, for the upper natural frequency X
2

and buckling stress "
2
, this situation

is completely reverse. The second foundation parameter K
2

does not a!ect the
results so much if the thickness parameter ¸/H and/or the "rst foundation
parameter K

1
are large.

6. CONCLUSIONS

Beyond the limits of applicability of the existing beam theories, various orders of
the expanded approximate theories have been applied to analyze the vibration and



Figure 4. Buckling stress versus axial displacement mode number curves. (** : "
1
; } } } } } : "

2
)

(a) ¸/H"2, K
2
"0; (b) ¸/H"2, K

2
"1; (c) ¸/H"5, K

2
"0; (d) ¸/H"5, K

2
"1.
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buckling problems of a simply supported deep beam-column subjected to axial
stresses. In the present analysis, natural frequencies and buckling stresses of a deep
beam-column resting on two-parameter elastic foundations have been obtained.

The following conclusions may be drawn from the present analysis:

(1) The natural frequencies and buckling stresses of deep beam-columns resting
on two-parameter elastic foundations calculated by using the classical beam
theory are usually overpredicted. It is very important to take into account the
complete e!ects of higher order deformations such as shear deformations
with depth changes and rotatory inertia for the analysis of vibration and
buckling problems of deep beam-columns on elastic foundations.

(2) In order to verify the accuracy of the present results, the convergence
properties of the numerical solutions according to the order of approximate



TABLE 4

Critical buckling stress with buckling mode number

"
cr

¸/H K
1

K
2

CBT TBT M"5

2 0 0 1)00001 0)56411 0)57231
101 1)10271 0)65881 0)65871
102 2)02661 1)27652 1)24612
103 6)56652 1)5588= 1)56214
104 20)40663 1)5588= 1)57038
105 64)51666 1)5588= 1)57039
0 1 2)00001 1)48091 1)29091

101 2)10271 1)57431 1)35111
102 3)02661 2)17142 1)55382
103 7)56652 2)5588= 1)57038
104 21)40663 2)5588= 1)57039
105 65)51666 2)5588= 1)57039

5 0 0 1)00001 0)88291 0)88601
101 1)10271 0)98291 0)98421
102 2)02661 1)88231 1)86341
103 6)56652 5)05122 4)85012
104 20)40663 9)7424= 8)84365
105 64)51666 9)7424= 9)813717
0 1 2)00001 1)85631 1)83821

101 2)10271 1)95631 1)93541
102 3)02661 2)85561 2)80691
103 7)56652 5)98252 5)63982
104 21)40663 10)49779 9)13425
105 65)51666 10)7424= 9)814319

10 0 0 1)00001 0)96751 0)96831
101 1)10271 1)06931 1)06971
102 2)02661 1)98591 1)98181
103 6)56652 6)03022 5)99172
104 20)40663 16)61484 16)24764
105 64)51666 35)290211 32)69078
0 1 2)00001 1)95971 1)95561

101 2)10271 2)06161 2)05691
102 3)02661 2)97841 2)96851
103 7)56652 7)00362 6)94152
104 21)40663 17)54774 17)07744
105 65)51666 36)201211 33)13398
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theories have been examined. The present results obtained for M"5 are
considered to be accurate enough for very deep beam-columns on elastic
foundations. It may be noticed that the one-dimensional higher order beam
theory in the present paper can predict the natural frequencies and buckling
stresses of deep beam-columns on elastic foundations.



Figure 5. Generalized displacement versus K
1
curves. (**: K

2
"0; } } } } } : K

2
"1) (a) ¸/H"2;

(b) ¸/H"5.
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(3) In the case of a simply supported beam-column subjected to axial stress, the
natural frequency can be expressed explicitly with reference to the natural
frequency of a beam without axial stress. When the natural frequency reaches
zero under axial compressions, elastic buckling occurs. The critical buckling
stress can be predicted from the natural frequency of a beam-column without
axial stress.
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